Ground expression

In mathematical logic, a ground term of a formal system is a term that does not contain any variables at all, and a closed term is a term that has no free variables. In first-order logic all closed terms are ground terms, but in lambda calculus the closed term λ x. xy. y) is not a ground term.

Similarly, a ground formula is a formula that does not contain any variables, and a closed formula or sentence is a formula that has no free variables. In first-order logic with identity, the sentence \forall x (x=x) is not a ground formula.

A ground expression is a ground term or ground formula.

Contents

Examples

Consider the following expressions from first order logic over a signature containing a constant symbol 0 for the number 0, a unary function symbol s for the successor function and a binary function symbol + for addition.

Ground expressions are necessarily closed. The last example, ∀x: (s(x)+1=s(s(x))), shows that a closed expression is not necessarily a ground expression. So, this formula is a closed formula, but not a ground formula, because it contains a logical variable, even though that variable is not free.

Formal definition

What follows is a formal definition for first-order languages. Let a first-order language be given, with the C the set of constant symbols, V the set of (individual) variables, F the set of functional operators, and P the set of predicate symbols.

Ground terms

Ground terms are terms that contain no variables. They may be defined by logical recursion (formula-recursion):

  1. elements of C are ground terms;
  2. If fF is an n-ary function symbol and α1, α2, ..., αn are ground terms, then f1, α2, ..., αn) is a ground term.
  3. Every ground term can be given by a finite application of the above two rules (there are no other ground terms; in particular, predicates cannot be ground terms).

Roughly speaking, the Herbrand universe is the set of all ground terms.

Ground atom

A ground predicate or ground atom is an atomic formula all of whose terms are ground terms. That is,

If pP is an n-ary predicate symbol and α1, α2, ..., αn are ground terms, then p1, α2, ..., αn) is a ground predicate or ground atom.

Roughly speaking, the Herbrand base is the set of all ground atoms, while a Herbrand interpretation assigns a truth value to each ground atom in the base.

Ground formula

A ground formula or ground clause is a formula all of whose arguments are ground atoms.

Ground formulae may be defined by syntactic recursion as follows:

  1. A ground atom is a ground formula; that is, if pP is an n-ary predicate symbol and α1, α2, ..., αn are ground terms, then p1, α2, ..., αn) is a ground formula (and is a ground atom);
  2. If p and q are ground formulae, then ¬(p), (p)∨(q), (p)∧(q), (p)→(q), formulas composed with logical connectives, are ground formulae, too.
  3. If p is a ground formula and we can get q from it that way some ( or ) we delete or insert in the p formula, and then the result, q is well-formed and equivalent with p, then q is a ground formula.
  4. We can get all ground formulae applying these three rules.

References